
AVF Control Number: AVF-VSR-178.0988
(88-02-11-RWL

0

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number. 880613W1.09090
Rockwell International Corporation

DDC-Based Ada/CAPS Compiler, Version 2.0
VAX 8650 to CAPS/AAMP

Completion of On-Site Testing:
15 June 1988

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington DC 20301-3081

DTIC
ELECTE

FEB 1 34981&

H

NbF0 ThU1ON STA TEZODE ALApproved for public~ ro89 2 1m09

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered_

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE , ,suros
BEFORE COMPLETEING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Valioation Summary Report: 15 June 1988 to 15 June 1989

Rockwell International Corporation, DDC-Based
Ada/CAPS CompFiler Version 2.0, VAX 8650 6. PERFORMING ORG. REPORT NUMBER
(Host) to CAPS/AP (Target). Cg_ _#$ W_, 0_ _)

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Wright-Patterson Air Force Base,
Dayton, Ohio, U.S.A.

11. CONTROLLING OFFICE NAME AND APORESS 12. REPORT DATE
Ada Joint Program Office 15Junet988
United States Department of Defense 13. NUMBER o7 PAUES
Washington, DC 20301-3081 42p

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
UNCLASSIFIED

Wright-Patterson Air Force Base, ISa. qE kA6jFICATION/DOWNGRADING
Dayton, Ohio, U.S.A. N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
DDC-Based Ada Compiler, Version 2.0, Rockwell International Corporation, Wright-Patterson Air Force Base,
VAX 8650 under VMS, 4.7 (Host) to CAPS/AAMP (bare machine) (Target), ACVC 1. 9.

DO p-m 1473 EDITION OF 1 NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECUPITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: DDC-Based Ada/CAPS Compiler, Version 2.0

Certificate Number: 880613WI.09090

Host: Target:
VAX 8650 under CAPS/AAMP
VMS, 4.7 bare machine

Testing Completed 15 June 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

SAda Joi~t PormOffice

Virginia L. Castor
Director
Department of Defense
Washington DC 20301

2

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1 .1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1 -3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BYCLASS. 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-4
3.7 ADDITIONAL TESTING INFORMATION3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method3-5

3.7.3 Test Site 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

cAs ion For

NTIS ;R.A&I

IPECTVM

Dist SpecalH

CHAPTER 1

INTRODUCTION

)This Validation Summary Report *iBRP describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results o ttin this compiler using the Ada Compiler
Validation Capability* (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.)

Een though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. \The purpose of validating is to ensure conformity
of the compiler to the Ada ,tandard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. 'qhe testing also identifies behavior that is
implementation dependent but perm"itted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-ste testing was completed 15 June 1988 at Rockwell International, 400
Collins Road NE, Cedar Rapids, IA 52498.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-650?

1-2

I ! II I I '- 1

INTRODUCTION

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization

Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical

1-3

INTRODUCTION

support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACYC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words
of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

1-l

INTRODUCTION

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library-a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time-that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and

1-5

INTRODUCTION

place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: DDC-Based Ada/CAS Compiler, Version 2.0

ACVC Version: 1.9

Certificate Number: 880613W1.09090

Host Computer:

Machine: VAX 8650

Operating System: VMS, 4.7

Memory Size: 16 megabytes

Target Computer:

Machine: CAPS/AAMP

Operating System: bare machine

Memory Size: 256K words

Communications Network: Ethernet

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an

implementation. The tests demonstrate the following characteristics:

. Capacities.

The compiler correctly processes tests containing loop statements

nested to 65 levels, block statements nested to 65 levels, and

recursive procedures separately compiled as subunits nested to 17

levels. It correctly processes a compilation containing 723

variables in the same declarative part. (See tests D55A03A..H (8

tests), D56001B, D64005E..G (3 tests), and D29002K.)

" Universal integer calculations.

An implementation is allowed to reject universal integer

calculations having values that exceed SYSTEM.MAX INT. This

implementation processes 64 bit integer calculations. (See tests
D4A02A, D4A002B, D4AO04A, and D4AO04B.)

" Predefined types.

This implementation supports the additional predefined types

LONG INTEGER and LONG FLOAT in the package STANDARD. (See tests
B86001C and B86001D.)

" Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTE24.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR during execution (See test
E24101A.)

. Expression evaluation.

Apparently all default initialization expressions for record
components are evaluated before any value is checked to belong to
a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

This implementation uses no extra bits for extra precision. This

implementation uses all extra bits for extra range. (See test
C35903A.)

Sometimes NUMERICERROR is raised when an integer literal operand
in a comparison or membership test is outside the range of the
base type. (See test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range of
the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AO14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more than
SYSTEM.MAX INT components raises NUMERIC ERROR when the array is
two-dimensional with second dimension larger than the first, and
raises CONSTRAINTERROR otherwise. (See test C36003A.)

CONSTRAINTERROR is raised when an array type with INTEGER'LAST +
2 components is declared. (See test C36202A.)

CONSTRAINT ERROR is raised when an array type with SYSTEM.MAXINT
+ 2 components is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT-ERROR when the array type is declared. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT ERROR when the array type is
declared. (See test C52104Y.)

2-3

CONFIGURATION INFORMATION

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises CONSTRAINT ERROR
when the array type is declared (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E3810 A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a

representation clause is used by a test in a way that violates a

restriction, then the implementation must reject it.

2-4

CONFIGURATION INFORMATION

For this implementation:

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character and boolean
types are not supported. (See tests C35502I..J, C35502M..N,
and A39005F.)

* Enumeration representation clauses containing noncontiguous
values for character types are not supported. (See tests
C35507I.J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types
containing representational values other than (FALSE => 0,
TRUE > 1) are not supported. (See tests C355081..J and
C35508M. .N.)

" Length clauses with SIZE specifications for enumeration types
are not supported. (See test A39005B.)

" Length clauses with STORAGE SIZE specifications for access
types are supported. (See tests A39005C and C87B62B.)

" Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests 139005D and C87B62D.)

• Length clauses with SMALL specifications are not supported.
(See tests A39005E and C87B62C.)

" Record representation alignment clauses are not supported.
(See test A39005G.)

. Length clauses with SIZE specifications for derived integer
types are not supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures and functions. (See
tests LA3O04A, LA3004B, EA3004C, EA3004D, CA3OO4E, and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants without defaults.

(See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 can be instantiated with unconstrained array
types and record types with discriminants without defaults. (See
tests AE2101H, EE2401D, and EE2401G.)

2-5

CONFIGURATION INFORMATION

The director, AJPO, has determined (WI-00332) that every call to

OPEN and CREATE must raise USE ERROR or NAME ERROR if file
input/output is not supported. This implementation exhibits this
behavior for SEQUENTIAL IO, DIRECTIO, and TEXTIO.

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A.)

Generic subprogram declarations and bodies as subunits cannot be
compiled in separate compilations. (See tests CA2009F.)

Generic package declarations and bodies cannot be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Subunits of generic unit bodies can be compiled in separate
compilations. (See test CA3011A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested, 27 tests had been withdrawn because of test errors. The AVF
determined that 516 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 285
executable tests that use floating-point precision exceeding that supported
by the implementation and 174 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for 9 tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 105 1046 1352 17 13 46 2579

Inapplicable 5 5 501 0 5 0 516

Withdrawn 3 2 21 0 1 0 27

TOTAL 113 1053 1874 17 19 46 3122

3-1

TEST INFORMATION

3.3 SUtARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
__ _.__ _ _2 14 5 6 7 8 9 10 11 12 14

Passed 184 454 490 244 166 98 140 326 135 36 232 3 71 2579

Inapplicable 20 118 184 4 0 0 3 1 2 0 2 0 182 516

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

A35902C A74106C ADIA01A B28003A BC3105A
C34004A C35502P C35904A C35904B C35A03E
C35AO3R C37213H C37213J C37215C C37215E
C37215G C37215H C38102C C41402A C45332A
C45614C C85018B C87BO4B CC1311B CE2401H
CE3208A E28005C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 516 tests were inapplicable for the
reasons indicated:

C35502I..J (2 tests), C3550a..N (2 tests), C35507I..J (2 tests),
C35507M..N (2 tests), C35508I..J (2 tests), C35508M..N (2 tests),
A39005F, and C55B16A use enumeration representation clauses whizh
are not supported by this compiler.

3-2

TEST INFORMATION

C35702A uses SHORT-FLOAT which is not supported by this

implementation.

A39005B and C87B62A use length clauses with SIZE specifications

for derived integer types or for enumeration types which are not

supported by this compiler.

. A39005E and C87B62C use length clauses with SMALL specifications
which are not supported by this implementation.

. A39005G uses a record representation clause which is not supported

by this compiler.

. The following tests use SHORT-INTEGER, which is not supported by
this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55BOTB B55BO9D

C45231D requires a macro substitution for any predefined numeric

types other than INTEGER, SHORTINTEGER, LONG INTEGER, FLOAT,

SHORT FLOAT, and LONG-FLOAT. This compiler does not support any
such types.

" C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
base types which are not supported by this compiler.

" C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

" B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

" C96005B requires the range of type DURATION to be different from

that of its base type; in this implementation they are the same.

" CA2009F compiles generic subprogram declarations and bodies in
separate compilations. This compiler requires that generic

subprogram declarations and bodies be in a single compilation.

CA2009C, BC3204C, and BC3205D compile generic package
specifications and bodies in separate compilations. This compiler
requires that generic package specificatiors and bodies be in a
single compilation.

3-3

TEST INFORMATION

The following 182 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2102C CE2102G..H(2) CE2102K CE2104A..D(4)

CE2105A..B(2) CE2106A..B(2) CE2107A..I(9) CE2108A..D(4)
CE2109A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE2201A..C(3) EE2201D EE2201E
CE2201F..G(2) CE2204A..B(2) CE2208B CE221OA
CE2401A..C(3) EE2401D CE2401E..F(2) EE2401G
CE2404A CE2405B CE2406A CE2407A
CE2408A CE2409A CE2410A CE2411A
AE3101A CE3102B EE3102C CE3103A
CE3104A CE3107A CE3108A..B(2) CE3109A
CE3110A CE3111A..E(5) CE3112A..B(2) CE3114A..B(2)
CE3115A CE3201A CE3202A CE3203A
CE3301A..C(3) CE3302A CE3305A CE3402A..D(4)
CE3403A..C(3) CE3403E..F(2) CE3404A..C(3) CE3405A..D(4)
CE3406A..D(4) CE3407A..C(3) CE3408A..C(3) CE3L09A
CE3409C..F(4) CE3410A CE3&1OC..F(4) CE3411A
CE3411C CE3412A CE3412C CE343A
CE3413C CE3602A..D(4) CE3603A CE3604A
CE3605A..E(5) CE3606A..B(2) CE37O4A..B(2) CE3704D..F(3)
CE370M..O(3) CE3706D CE3706F CE380A..E(5)
CE3804G CE38041 CE3804K CE3804M
CE3805A..B(2) CE3806A CE3806D..E(2) CE3905A. .C3)
CE3905L CE3906A..C(3) CE3906E..F(2)

The following 285 tests require a floating-point accuracy that
exceeds the maximum of 9 digits supported by this implementation:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Exampl'-s of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

3-4

TEST INFORMATION

Modifications were required for 9 Class B tests.

The following Class B tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B33301A B55AO1A B67001A B67001C B67001D
B97102A BC1109A BC1109C BC1109D

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the DDC-Based Ada/CAPS Compiler, Version 2.0, was submitted to the AVF by
the applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the DDC-Based Ada/CAPS Compiler, Version 2.0, using ACVC Version
1.9 was conducted on-site by a validation team from the AVF. The
configuration consisted of a VAX 8650 host operating under VMS, Version
4.7, and an Advanced Architecture Microprocessor (AAMP) bare machine target
(see figure below). A CDS-85 Computer Development Station was used to
facilitate running the executable tests. An executable image for each test
was transferred from the VAX to the CDS-85 using Ethernet. An Ada Symbolic
Debugger, Version 3.6, was used to load each image into CDS-85 memory from
which the program was executed by the AAMP. The Timer Board provided the
real-time clock used by the AAMP. Test output was captured by the CDS-85.

VAX 86W5 CDM4

(V'MS 4.7) AAW d

3-5o

= ,,wNOWm I I IR I II I

TEST INFORMATION

A magnetic tape containing all tests except for withdrawn tests, tests
requiring unsupported floating-point precisions, and executable tests that
use unsupported file operations was taken on-site by the validation team
for processing. Tests that make use of implementation-specific values were
customized before being written to the magnetic tape. Tests requiring
modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The body of package REPORT was modified to use a package SIMPLE_10 instead
of TEXT 10 because package TEXT 10 is implemented in such a way that an
exception is raised for all file operations. A set of executable tests was
run to verify that the modified body of package REPORT operated correctly.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the VAX 8650, and all executable tests were run on the
CAPS/AAMP. Object files were linked on the host computer, and executable
images were transferred to the target computer. The transferred executable
images did not include those portions of the run-time system that are
identical for every test. The run-time system was loaded once for each
chapter and used by each test. This had the effect of significantly
reducing the time needed for downloading the tests. Results were printed
from the host computer, with results being transferred to the host computer
via Ethernet.

The compiler was tested using command scripts provided by Rockwell
International Corporation and reviewed by the validation team. The
compiler was tested using all default switch settings except for the
following:

Switch Effect

/LIST Generate a source listing
/NODEBUG Suppress debugger information
/NOOBJECT Suppress object code generation (for Class B

and L tests)

Tests were compiled, linked, and executed (as appropriate) using a single
host computer and a single target computer. Test output, compilation
listings, and job logs were captured on magnetic tape and archived at the
AVF. The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at Rockwell International, 400 Collins Road NE, Cedar
Rapids, IA 52498 and was completed on 15 June 1988.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Rockwell International Corporation has submitted the
following Declaration of Conformance concerning the
DDC-Based Ada/CAPS Compiler, Version 2.0.

A-i

DECLARATION OF CONFORMANCE

Compiler Implementor: Rockwell International
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: DDC-Based Ada/CAPS Compiler Version: 2.0
Host Architecture ISA: VAX 8650 OS&VER #: VMS 4.7
Target Architecture ISA: CAPS/AAMP OS&VER #: bare machine

Implementor's Declaration

I, the undersigned, representing Rockwell International Corporation, have
implemented no deliberate extensions to the Ada Language Standard ANSI/MIL-
STD-1815A in the compiler listed in this declaration. I declare that Rockwell
International Corporation is the owner of record of the Ada language compiler
listed above and, as such, is responsible for maintaining said compiler in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for the
Ada language compiler listed in this declaration shall be made only in the
owner's corporate name.

_________________ Date:________
Rockwell International Corporation
C. E. Kress, Manager of Processor Technology Department

Owner's Declaration

I, the undersigned, representing Rockwell International Corporation, take full
responsibility for implementation and maintenance of the Ada compiler listed
above, and agree to the public disclosure of the final Validation Summary
Report. I declare that all of the Ada language compilers listed, and their
host/target performance are in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A.

____________k: Date: _ _ _ _ _
Rockwell International Corporation
C. E. Kress, Manager of Processor Technology Department

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the DDC-Based Ada/CAPS Copiler, 2.0, are described in the following
sections, taken from Appendix F of the Ada Standard.
Implmentation-specific portions of the package STANDARD are also included
in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -2_147_483_f646 . 2_1471483_617;

type FLOAT is digits 6 range -16#O.7FFF-FF$#E+32 .. 16#0.7FFFFF8#E 32;
type LONG-FLOAT is digits 9

range -16#0.7FFFFFFFF8fE+32 .. 16#0.7FFFFFFF FF8#E+32;

type DURATION is delta 0.0001 range -131072.0000 .. 131071.999938965;

end STANDARD;

8-1

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteristics
of the DOC-Based Ada/CAPS Compiler.

F.1 Implementation-Dependent Pragmas.

F.1.1 Pragma EXPORT.

Takes an identifier denoting a subprogram or an object, and
optionally takes a string literal (the name of a CAPS object module
entry/external name) as arguments. This pragma is only allowed at
the place of a declarative item and must apply to a subprogram or
object declared by an earlier declarative item in the same
declarative part or package specification. The pragma must occur in
the same compilation unit as the subprogram body to export a
subprogram, and in the same compilation unit as the declaration to
export an object. The subprogram to be exported may not be nested
within anything but a library unit package specification or body.
The pragma is not allowed for an access or a task object. The
object exported must be a static object. Generally, objects
declared in a package specification or body are static; objects
declared local to a subprogram are not.

This pragma allows the export of a procedure, function, or object to
a non-Ada environment.

pragma EXPORT(internal name (, external name]);

internal-name ::- identifier

external-name ::- string literal

If external name is not specified, the internal name is used as the
external name. If a string literal is given, i is used.
External-name must be an identifier that is acceptable to the CAPS
linker, Though it does not have to be a valid Ada identifier.

B-2

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

Exporting Subprograms:

In this case the pragma specifies that the body of the specified
subprogram associated with an Ada subprogram specification may be
called from another CAPS language (e.g., Jovial, or assembly).

Subprograms must be uniquely identified by their internal names. An
exported subprogram must be a library unit or be declared in the
outermost declarative part of a library package (specification or
body). An EXPORT pragma is allowed for a subprogram which is a
compilation unit only after the subprogram body in the compilation
unit. It is allowed for a subprogram in a package body after the
body of the subprogram. Pragma EXPORT is not allowed in a package
specification.

Example:

procedure AUTOPILOT (MODE: in INTEGER) is

end AUTO PILOT;
pragma EXPORT (AUTOPILOT);

Exporting Objects:

In this case the pragma specifies that an Ada object is to be
accessible by an external routine in an another CAPS language.

Objects must be uniquely identified by their internal names. An
exported object must be a variable declared in the outermost
declarative part of a library package (specification or body).

The object must be allocated to static storage. To guarantee this,
the subtype indication for the object must denote one of the
following:

o A scalar type or subtype.

o An array subtype with static index constraints whose
component size is static.

o A simple record type or subtype.

Example:

SYSTEM STATUS: INTEGER;
pragma EXPORT (SYSTEM-STATUS, "SYS$STS"); -- SYS$STS is a Jovial

-- identifier.

B-3

L _" m|

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.l.2 Pragma IMPORT.

Takes an internal name denoting a subprogram, and optionally takes
an external name (the name of a CAPS object module entry/external
name) as arguments. This pragma is only allowed at the place of a
declarative item and must apply to a subprogram declared by an
earlier declaration item in the same declarative part or package
specification.

This pragma allows the import of a procedure or function from a
non-Ada environment.

pragma IMPORT(internalname (, externalname]);

internal name ::- identifier I string_literal

externalname ::- identifier I string_literal

Internal name may only be a string literal when designating an
operator-function for import. If ixternalname is not specified,
the internal name is used as the external name. If an identifier or
string literil is given, it is used. Extirnal name must name an
identifier that is acceptable to the Ada linkei though it does not
have to be a valid Ada identifier.

Importing Subprograms:

In this case the pragma specifies that the body of the specified
subprogram associated with an Ada subprogram specification is to be
provided by another CAPS language. The pragma INTERFACE must also
be given for the internal name earlier for the same declarative part
or package specification.- The use of the pragma INTERFACE implies
that a corresponding body is not given.

Subprograms must be uniquely identified by their internal names. An
imported subprogram must be a library unit or be declared in the
outermost declarative part of a library package (specification or
body). An import pragma is allowed only if either the body does not
have a corresponding specification, or the specification and body
occur in the same declarative part.

If a subprogram has been declared as a comvilation unit, the pragma
is only allowed after the subprogram declaration and before any
subsequent compilation unit. This pragma may not be used for a
subprogram tIat is declared by a generic instantiation of a
predefined subprogram.

B-4

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

Example:

function SIN (X: in FLOAT) return FLOAT;
pragma INTERFACE (ASSEMBLY, SIN);
pragma IMPORT (SIN, "SIN$$");

F.1.3 Pragma STACKSIZE.

This pragma has two arguments, a task type name and an integer
expression. This pragma is allowed anywhere that a task storage
specification is allowed. The effect of this pragma is to use the
value of the expression as the number of storage units (words) to be
allocated to the process stack of tasks of the associated task type.

Example:

task type DISPLAYUNIT is

entry UPPER DISPLAY;
entry BOTTOM.LINE;

end DISPLAY-UNIT;

for DISPLAY UNIT'STORAGE SIZE use 20 000;
pragma STACKSIZE (DISPLAYUNIT, 100U);

F.2 Implementation-Dependent Attributes.

No implementation-dependent attributes are supported.

B-5

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.3 Specification Of The Package SYSTEM.

package SYSTEM is

type ADDRESS is range 0..16#FF FFFF# -- 24 bit address
subtype PRIORITY is INTEGER range I .. 254;
type NAME is (VAXI1, AAMP, CAPS6, CAPS7,

CAPSS, CAPS10, ACAPS);
SYSTEM NAME: constant NAME :- AAMP;
STORAGE UNIT: constant :- 16;
MEMORY SIZE: constant :- 16 384 * 1024;
MIN INT: constant :- -2-147 483 647-1;
MAX-INT: constant :- 2 147_J83_647;
MAX- DIGITS: constant :- 9-
MAX-MANTISSA: constant :- 31;
FINE DELTA: constant :- 2#l.0#E-30;
TICK: constant :- 0.000_1;

end SYSTEM;

F.4 Representation Clause Restrictions.

F.4.1 Representation Clauses.

In general, no representation clauses may given for a derived type.
The representation clauses that are allowed for non-derived types
are described in the following sections.

F.4.2 Length Clauses.

The compiler accepts only length clauses that specify the number of
storage units reserved for a collection or for a task data stack
size via the 'STORAGE SIZE clause. (See pragma STACK SIZE for a
complementary capabilTty.) The 'SIZE clause has no ef-ect for tasks.

F.4.3 Enumeration Representation Clauses.

Enumeration representation clauses are not supported.

F.5 Implementation-Generated Names.

Implementation-generated names for implementation-dependent
components are not supported.

B-6

IMPLEMENTATION-DEPENDENT CHARACTER:STICS

F.6 Address Clause Expressions.

All address values are interpreted as the 24-bit address of a 16 bit
word of memory, even for code addresses which are normally thought
of as 8 bit byte addresses. All subprogram and task entry addresses
are word aligned by the compiler.

F.7 Unchecked Conversion Restrictions.

Unchecked conversion is only allowed between objects of the same
size.

F.8 I/O Package Implementation-Dependent Characteristics.

The target environment does not support a file system; therefore 1/O
procedure or function calls involving files will raise the
predefined exception USEERROR or STATUSERROR.

F.8.1 Package SEQUENTIAL_10.

All procedures and functions raise STATUS ERROR, except for CREATE
and OPEN, which raise USE-ERROR, and ISOPEN which always returns
FALSE.

F.8.2 Package DIRECT10.

All procedures and functions raise STATUS ERROR, except for CREATE
and OPEN, which raise USEERROR, and IS_OPEN which always returns
FALSE.

F.8.3 Package TEXTIO.

All procedures and functions with a file parameter raise
STATUS ERROR, except for CREATE and OPEN which raise USE ERROR, and
IS OPEN which always returns FALSE. All procedures and 'unctions
wiEhout a file parameter which operate on the current default input
file raise STATUS ERROR. All procedures and functions without a
file parameter whTch operate on the current default output file
raise STATLS ERROR, except PUT, PUT LINE, and NEW LINE which
communicate ;ith external hardware/ioftware (usuaTly the terminal)
via a memory-mapped I/O interface.

B-7

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.8.4 Package LOWLEVEL 10.

Package LOWLEVEL IO is not provided.

r.9 Other Implementation-Dependent Features.

F.9.1 Predefined Types.

This section describes the implementation-dependent predefined types
declared in the predefined package STANDARD, and the relevant
attributes of these types.

F.9.1.1 Integer Types.

Two predefined integer types are implemented, INTEGER, and
LONGINTEGER. They have the following attributes:

INTEGER'FIRST - -32768
INTEGER'LAST - 32767
INTEGER'SIZE - 16

LONG INTEGER'FIRST - -2 147 483 648
LONG INTEGER'LAST - 2-147-483-647
LONG INTEGER'SIZE - 32

F.9.1.2 Floating Point Types.

Two predefined floating point types are implemented, FLOAT and
LONG-FLOAT. They have the following attributes:

FLOAT'DIGITS 6
FLOAT'EMAX 84
FLOAT'EPSILON 16#0.1000 000#E-04

9.53674E-U7
FLOAT'FIRST -16#0.7FFF FF8#E+32

-1.70141E+78
FLOAT'LARGE 16#0.FFFF F80*E+21

1.93428E+75
FLOAT'LAST 16#0.7FFF FF8#E 32

1.70141E+18
FLOAT'MACHINE EMAX 127
FLOAT'MACHINE-EMIN - -127
FLOAT'MACKINE-MANTISSA - 24
FLOAT'MACHINE-OVERFLOWS - TRUE
FLOAT'MACHINE RADIX 2
FLOAT'MACHINE ROUNDS TRUE

B-8

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

FLOAT'MANTISSA 21
FLOAT'SAFE EMAX 127
FLOAT'SAFE-LARGE 16#0.7FFF FC#E+32

M 1.70141E+18
FLOAT'SAFESMALL W 16#0.1000 000#E-31

- 2.93874E-9
FLOAT'SIZE 32
FLOAT'SMALL 16#0.8000 000#E-21

, 2.58494E-76

LONG FLOAT'DIGITS W 9
LONG FLOATEMAX W 124
LONG-FLOATEPSILON - 16#0.4000 0000 000#E-7

- 9.31322573E-10-
LONGFLOAT'FIRST - -16#0.7FFF FFFF FF8#E+32

- -1.7014118 E 38-
LONG FLOAT'LARGE - 16#0.FFFF FFFE 000#E+31

- 2.1267647gE+37-
LONG FLOAT'LAST - 16#0.7FFF FFFF FF8#E+32

- 1.7014118TE 38
LONG FLOAT'MACHINEEMAX - 127
LONG-FLOAT'MACHINE-EMIN - -127
LONG-FLOAT'MACHINE-MANTISSA - 40
LONG FLOAT'MACHINE-OVERFLOWS - TRUE
LONG-FLOAT'KACHINE-RADIX n 2
LONG-FLOAT'MACHINE-ROUNDS -TRUE
LONG FLOAT'MANTISSA - 31
LONG FLOAT'SAFE EMAX - 127
LONG-FLOAT'SAFE-LARGE " 16#0.7FFF FFFF#E+32

- 1.7014118 E+38
LONG FLOAT'SAFESMALL - 16#0.1000 0000 000#E-31

- 2.9387358UE-39
LONG FLOAT'SIZE - 48
LONG-FLOAT'SMALL - 16#0.8000 0000 000#E-31

S-2.3509887UE-38-

F.9.1.3 Fixed Point Types.

To implement fixed point numbers, Ada/CAPS uses two sets of
anonymous, predefined, fixed point types, here named FIXED and
LONG FIXED. These names are not defined in package STANDARD, but
are Enly used here for reference.

These types are of the following form:

type FIXED-TYPE is delta SMALL range -M*SMALL .. (M-1)*SMALL;

where SMALL - 2**n for -128 <- n <- 127,
and x - 2**l5 for FIXED, or M - 2**31 for LONGFIXED.

B-9

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

For each of FIXED and LONG FIXED there exists a virtual predefined
type for each possible vale of SMALL (Cf. RM 3.5.9). SMALL may be
any power of 2 which is representable by a LONG FLOAT value. FIXED
types are represented by 16 bits, while 32 bits-are used for
LONGFIXED types.

A user-defined fixed point type is represented as that predefined
FIXED or LONG FIXED type which has the largest value of SMALL not
greater than The user-specified DELTA, and which has the smallest
range that includes the user-specified range.

As the value of SMALL increases, the range increases. In other
words, the greater the allowable error (the value of SMALL), the
larger the allowable range.

Example 1:

For a FIXED type, to get the smallest amount of error possible
requires SMALL - 2"*-128, but the range is constrained to:

-(2*15)*(2-*-128) .. ((2**l5)-l)*(2**-l28), which is
-2**-113 .. ((2"*-113) - (2"*-128)).

Example 2:

For a FIXED type, to get the largest range possible requires SMALL -
2**127, i.e., the error may be as large as 2**127. The range is
then:

-(2**15)*(2**127) .. ((2**l5)-1)*(2**l27), which is
-2**142 .. ((2**142) - (2**127)).

For any FIXED or LONG FIXED type T:
T'MACHINE OVERFLOWS - TRUE
T'MACHINEROUNDS - FALSE

F.9.1.4 The Type DURATION.

The predefined fixed point type DURATION has the following
attributes:

DURATION'AFT 4
DURATION'DELTA 0.0001
DURATION'FIRST -131 072.0000
DURATION'FORE 7 -
DURATION'LARGE 131 071.999938965

2#170#E+17 - 2#1.OF-14
DURATION'LAST DURATION'LARGE
DURATION'MANTISSA 31
DURATION'SAFE LARGE DURATION'LARGE
DURATION'SAFE-SMALL DURATION'SMALL
DURATION'SIZE- 32
DURATION'SMALL 6.103515625E-5

B-10

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

2. 1 E-14

F.9.2 Uninitialized Variables.

There is no check on the use of uninitialized variables. The effect
of a program that uses the value of such a variable is undefined.

F.9.3 Package.MACHINECODE.

Machine code insertions (cf. RM 13.8) are supported by the Ada/CAPS
compiler via the use of the predefined package MACHINE CODE.

package MACHINECODE is

type CODE is record
INSTR: STRING (1 .. 80);

end record;

end MACHINECODE;

Machine code insertions may be used only in -a procedure body, and
only if the body contains nothing but code statements, as in the
following example:
with MACHINE CODE; -- Must apply to the compilation unit

-- containing DOUBLE.

procedure DOUBLE (VALUE: in INTEGER; DOUBLE VALUE: out INTEGER);

procedure DOUBLE (VALUE: in INTEGER; DOUBLE VALUE: out INTEGER) is

begin

MACHINE CODE.CODE, (INSTR -> "REFSL 1"); -- Get VALUE.
MACHINE-CODE.CODE' (INSTR -> "DUP"); -- make copy of VALUE.
MACHINE -CODE.CODE1 (INSTR -> "LOCX"); -- Add copies together.
MACHINE CODE.CODE' (INSTR -> "ASNSL 0"); -- Store result in

-- DOUBLE VALUE.
end DOUBLE;

The string value assigned to INSTR may be a CAPS assembly language
instruction or macro. The file ADAMACS.MAC, located in a runtime
subdirectory of the compiler system, defines the macros which are
available to use. The macros may change with different releases and
should be used cautiously as there is no guarantee that they will
perform the same across all rel.eases. The CAPS Macro Assembler
User's Guide contains information on how to call macros and write
assembly instructions.

B-1l

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

F.9.4 Compiler Limitations.

The following limitations apply to Ada programs in the DDC-Based
Ada/CAPS Compiler System:

" A program (sum of all compilation units) may not contain
more than 64K words of static data and stacks. Static data
is allocated for variables declared in the specification or
body of a package. A stack is allocated for each task
including the main program. Some of the 64K maximum is
used by the runtime system. Static data requirements
exceeding the 64K word maximum may be permanently allocated
to the heap at the cost of an additional indirect memory
access.

o A compilation unit may not contain more than 64K bytes (32K
words) of code.

o A compilation unit may not contain more than 32K words of
data.

o A compilation unit-may not contain more than 32K words of
constants.

o It follows that any single object may be no larger than 32K
words.

o No more than 500 subprograms may be defined in a single
compilation unit, including any implicitly allocated by the
compiler.

o The maximum nesting level for blocks is 100.

B-12

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaninc Value

$BIG_ID1 (1..125 =>'A', 126 =>tl)
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 (l..125 >'A', 126 =>'2')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID13 (l..62 1 64..126 =>'A', 63 =>'3')
Identifier the size of the
maximum input line length with
varying middle character.

$BIG ID4 (I..62 I 64..126 =>'A', 63 >'4')
Identifier the size of the
maximum input line length with
varying middle character.

$BIGINT LIT (l..123 W>01, 124,..126 W>2981)

An integer litera' of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-i

TEST PARAMETERS

Name and Meaning Value

$BIGREAL LIT (1..120 >'0', 121..126 ->'69.0E')
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRINGI (1..66 >'A')
A string literal which when

catenated with BIG STRING2
yields the image of BIGID1.

$BIGSTRING2 (1..59 >'A', 60 +>'1')

A string literal which when
catenated to the end of

BIG STRING1 yields the image of

BIG ID1.

$BLANKS (i..i06 >' ')
A sequence of blanks twenty
characters less than the size

of the maximum line length.

$COUNTLAST 2_147_483647
A universal integer

literal whose value is

TEXT IO•.COUNT 'LAST.

$FIELD LAST 35
A universal integer
literal whose value is
TEXTIO.FIELD 'LAST.

$FILE NAME WITH BAD CHARS x }) I@#-&-Y
An external file name that
either contains invalid
characters or is too long.

$FILENAME_WITH WILD CARD CHAR XYZ'
An external file name that
either contains a wild card
character or is too long.

$GREATER THAN DURATION 76536.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

C-2

TEST PARAMETERS

Name and Meaning Value

$GREATER THAN DURATION BASE LAST 10 000 000.0
A universal real literal that is
greater than DURATIONt BASE'LAST.

$ILLEGALEXTERNAL FILEIAME1 BAD-CHARACTER*^

An external file name which
contains invalid characters.

$ILLEGAL-EXTERNAL FILE -NAME2 MUCH-TOO-LONG-NAME-FOR-A-FILE
An external file name which

is too long.

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$ INTEGERLAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$ INTEGER LAST PLUS 1 32 768
A univeral integer literal

A uversa-inee ltrl
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -76536.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -10_000_000.0

A universal real literal that is
less than DURATION'BASE'FIRST.

$MAX DIGITS 9
Maximum digits supported for
floating-point types.

$MAX IN LEN 126
.Maximum input line length
permitted by the implementation.

SMAX_INT 2_147.483.647
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAXINT PLUS..1 2147 483648
A universal integer literal
whose value is SYSTEM.MAX INT 1.

C-3

TEST PARAMETERS

Name and Meaning Value

$MAX LEN INT BASED LITERAL (1..2 =>"2:", 3..123 >'O',
A universal integer based 124..126 :>,111:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX IN LEN
long.

SMAX LEN REAL BASED LITERAL (1..3 =>"16:", 4..122 :'0',
A universal real based literal 123..125 :>"F.E")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

$MAX_STRING LITERAL (1..124 =>,A,)
A string literal of size
MAX IN LEN, including the quote
characters.

$MININT -21 47_1836
A universal integer literal

whose value is SYSTEM.MIN INT.

$NAME [No such type is supported]
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORTINTEGER,
LONG-FLOAT, or LONG-INTEGER.

$NEG BASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 27 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

" B28003A: A basic declaration (line 36) incorrectly follows a
later declaration.

" E28005C: This test requires that "PRAGMA LIST (ON);" not
appear in a listing that has been suspended by a previous
"PRAGMA LIST (OFF);"; the Ada Standard is not clear on this
point, and the matter will be reviewed by the AJPO.

" C300A: The expression in line 168 yields a value outside
the range of the target type T, but there is no handler for
CONSTRAINT-ERROR.

" C35502P: The equality operators in lines 62 and 69 should be
inequality operators.

A35902C: The assignment in line 17 of the nominal upper
bound of a fixed-point type to an object raises
CONSTRAINT ERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line
28 wrongly raises CONSTRAINTERROR, because its upper bound
exceeds that of the type.

" C35904B: The subtype declaration that is expected to raise
CONSTRAINT ERROR when its compatibility is checked against
that of various types passed as actual generic par ameters,
may, in fact, raise NUMERIC ERROR or CONSTRAINT-ERROR for
reasons not anticipated by the test.

D-1

WITHDRAWN TESTS

" C35A03E and C35A03R: These tests assume that attribute
'MANTISSA returns 0 when applied to a fixed-point type with a
null range, but the Ada Standard does not support this
assumption.

" C37213H: The subtype declaration of SCONS in line 100 is
incorrectly expected to raise an exception when elaborated.

• C37213J: The aggregate in line 451 incorrectly raises
CONSTRAINT ERROR.

• C37215C, C37215E, C37215G, and C37215H: Various discriminant
constraints are incorrectly expected to be incompatible with
type CONS.

* C38102C: The fixed-point conversion on line 23 wrongly
raises CONSTRAINT ERROR.

• C41402A: The attribute 'STORAGE SIZE is incorrectly applied
to an object of an access type.

• C45332A: The test expects that either an expression in line
52 will raise an exception or else MACHINE OVERFLOWS is
FALSE. However, an implementation may evaluate the
expression correctly using a type with a wider range than the
base type of the operands, and MACHINE OVERFLOWS may still be
TRUE.

• C45614C: The function call of IDENTINT in line 15 uses an
argument of the wrong type.

" A74106C, C85018B, C87BO4B, and CC1311B: A bound specified in
a fixed-point subtype declaration lies outside of that
calculated for the base type, raising CONSTRAINT ERROR.
Errors of this sort occur at lines 37 & 59, 142 & 143, 16 &
48, and 252 & 253 of the four tests, respectively.

" BC3105A: Lines 159 through 168 expect error messages, but
these lines are correct Ada.

" AD1A01A: The declaration of subtype SINT., raises
CONSTRAINT ERROR for implementations which select INT'SIZE to
be 16 or greater.

• CE2401H: The record aggregates in lines 105 and 117 contain
the wrong values.

" CE3208A: This test expects that an attempt to open the
default output file (after it was closed) with mode IN FILE
raises NAMEERROR or USE-ERROR; by Commentary AI-0048,
MODE ERROR should be raised.

D-2

